New Hampshire Volunteer Lake Assessment Program

2003 Interim Report for Kolelemook Lake Springfield

NHDES Water Division Watershed Management Bureau 29 Hazen Drive Concord, NH 03301

Observations & Recommendations

After reviewing data collected from **KOLELEMOOK LAKE**, **SPRINGFIELD**, the program coordinators have made the following observations and recommendations:

We would like to congratulate your group on sampling twice this season! However, we would like to continue to encourage your group to conduct more sampling events in the future. Typically we recommend that monitoring groups sample three times per summer (once in June, July, and August). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your monitoring group's water monitoring goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the lake at least once per month over the course of the season.

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake has been monitored through the program.

Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 ug/L.

The current year data (the top graph) show that the chlorophyll-a concentration *increased slightly* from July to August. The

chlorophyll-a concentration on both sampling events was **much less than** the state mean.

Overall, visual inspection of the historical data (the bottom graph) show that the mean annual chlorophyll-a concentration has *fluctuated*, but has not *continually increased* or *decreased*, since monitoring began in **1987**.

In the 2004 annual report, we will conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or inlake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.

The current year data (the top graph) show that the in-lake transparency **decreased** from July to August. The transparency on both sampling events was **greater than** the state mean. It is interesting to point out that as the chlorophyll concentration increased from July to August, the transparency decreased. We generally expect this inverse relationship in lakes. As the concentration of algal cells in the water increases, the ability for light to penetrate into the water column (and consequently, the ability for one to view the Secchi disk in the lake) decreases.

Overall, the visual observation of the historical data (the bottom graph) show that the mean annual in-lake transparency has remained *relatively stable*, ranging between approximately **4.0** and **5.0** meters, since monitoring began.

As discussed previously, in the 2004 annual report, we will conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *increased very slightly* from July to August. The phosphorus concentration on both sampling events was *less than* the state median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration **decreased slightly** from July to August. The phosphorus concentration on both sampling events was **less than** the state median.

Overall, visual inspection of the historical data show that the total phosphorus concentration in the epilimnion (upper layer) and the hypolimnion (lower layer) has **fluctuated**, but has **decreased slightly** (meaning improved slightly) overall since monitoring began in 1987.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the lake. The dominant phytoplankton species observed this year were *Rhizosolenia* (a diatom), *Asterionella* (a diatom), *and Dinobryon* (a golden-brown algae).

Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 2: Cyanobacteria (Blue-green algae)

A small amount of the cyanobacterium **Anabaena and Microcystis** was observed in the plankton sample this season. **These species, if** present in large amounts, can be toxic to livestock, wildlife, pets, and humans.

Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. During September of 2003, a few lakes and ponds in the southern portion of the state experienced cyanobacteria blooms. This was likely due to nutrient loading to these waterbodies. As mentioned previously, many weeks during the Spring and Summer of 2003 were rainy, which likely resulted in a large amount of nutrient loading to surface waters.

The presence of cyanobacteria serves as a reminder of the lake's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the lake by eliminating fertilizer use on lawns, keeping the lake shoreline natural, re-

vegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the lake in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria (blue-green algae) have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake. If a fall bloom occurs, please contact the VLAP Coordinator.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.5**, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this season ranged from **6.63** in the hypolimnion to **6.47** in the epilimnion, which means that the water is **slightly acidic.**

Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake pH.

> Table 5: Acid Neutralizing Capacity

Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP.

Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. The mean ANC value for New Hampshire's lakes and ponds is **6.7 mg/L**, which indicates that many lakes and ponds in the state are "highly sensitive" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) continued to remain *less than* the state mean. Specifically, the mean ANC this season was **3.65 mg/L**, which indicates that the lake is *critically sensitive* to acidic inputs (such as acid precipitation).

> Table 6: Conductivity

Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. The mean conductivity value for New Hampshire's lakes and ponds is **62.1 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The conductivity has **increased** in the lake and inlets since monitoring began. In addition, the epilimnetic conductivity (147.7 uMhos/cm) is **greater than** the state mean. It is worthy to note that the in-lake, inlet, and outlet conductivity levels were at an all-time high this season.

Typically, sources of increased conductivity are due to human activity. These activities include septic systems that fail and leak leachate into the groundwater (and eventually into the tributaries and the lake), agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and storm event sampling along the inlet(s) with elevated conductivity so that we can determine what may be causing the increases.

For a detailed explanation on how to conduct rain event and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article", or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the tributaries and in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride). Therefore, we recommend that the inlets with elevated conductivity be sampled for chloride next season.

Please note that there will be an additional cost for each of these samples, and these samples can not be analyzed at the satellite

laboratory at Colby Sawyer College. Therefore, it would be best to collect the chloride samples during the annual biologist visit next season.

> Table 8: Total Phosphorus

Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The Inlet was sampled for phosphorus this season, and the concentration was relatively **low** (13 ug/L). We hope this continues!

> Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2003 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the lake. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action.

The dissolved oxygen concentration was *greater than* 100 percent saturation at 5.0 meters deep spot on the July sampling event. Layers of algae can raise the dissolved oxygen in the water column since oxygen is a by-product of photosynthesis. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also raise the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth of the photic zone (depth to which sunlight can penetrate into the water column) was approximately 5.75 meters on this date (as shown by the Secchi-disk transparency), we suspect that an abundance of algae caused the oxygen super saturation.

> Table 11: Turbidity

Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity in the deep spot and inlet samples was *low*. We hope this continues!

> Table 12: Bacteria (E.coli)

Table 12 lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present. Please consult the "Other Monitoring Parameters" section of the report for the current state standards for *E. coli* in surface waters. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or after rain events.

The *E.coli* concentration was **low** at each of the sites tested this season. We hope this trend continues!

If you are concerned about bacteria levels at a particular beach location, we recommend that your monitoring group conduct *E.coli* testing next season on a weekend during heavy beach use or after a rain event. Since *E.coli* die quickly in cool pond waters, testing is most accurate and most representative of the health risk to bathers when the source (humans, animals, or waterfowl) is present.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

This was the first season your particular sampling group sampled **Kolelemook Lake.** Therefore, during the annual visit to your lake, the biologist trained your group how to collect samples. In future sampling seasons, during the annual biologist visit the biologist will conduct a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist will observe the performance of your monitoring group while sampling and will fill out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and

also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

NOTES

Monitor's Note (7/10/03): Some drifting occurred while at the deep spot. No flowing inlets. 2 loons observed while sampling.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, ARD-32, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/ard/ard-32.htm.

Aquarium Plants and Animals: Don't leave them stranded. Informational pamphlet sponsored by NH Fish and Game, Aquaculture Education and Research Center, and NHDES (603) 271-3505.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES-WD 97-8, NHDES Booklet, (603) 271-3503.

A Boater's Guide to Cleaner Water, NHDES pamphlet, (603) 271-3503.

Camp Road Maintenance Manual: A Guide for Landowners. KennebecSoil and Water Conservation District, 1992, (207) 287-3901.

Comprehensive Shoreland Protection Act, RSA 483-B, WD-SP-5, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-5.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, WD-SP-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-1.htm

Impacts of Development Upon Stormwater Runoff, WD-WQE-7, NHDES Fact Sheet, (603) 271-3503, or www.des.state.nh.us/factsheets/wqe/wqe-7.htm

Iron Bacteria in Surface Water, WD-BB-18, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-18.htm

Is it Safe to Eat the Fish We Catch? Mercury and Other Pollutants in Fish, NH Department of Health and Human Services pamphlet, 1-800-852-3345, ext. 4664.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, WD-BB-9, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-9.htm.

Management of Canada Geese in Suburban Areas: A Guide to the Basics, Draft Report, NJ Department of Environmental Protection Division of Watershed Management, March 2001, www.state.nj.us/dep/watershedmgt/DOCS/BMP_DOCS/Goosedraft.pdf.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm.

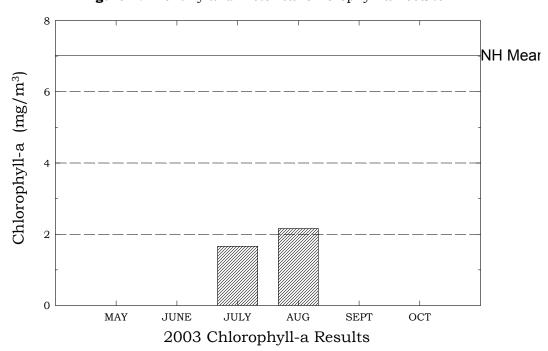
Road Salt and Water Quality, WD-WMB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm.

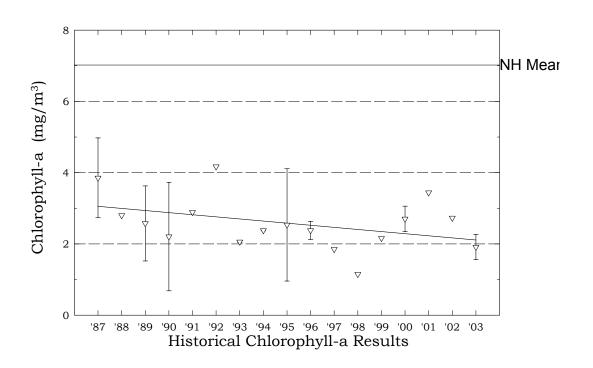
Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-15.htm.

Swimmers Itch, WD-BB-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-2.htm.

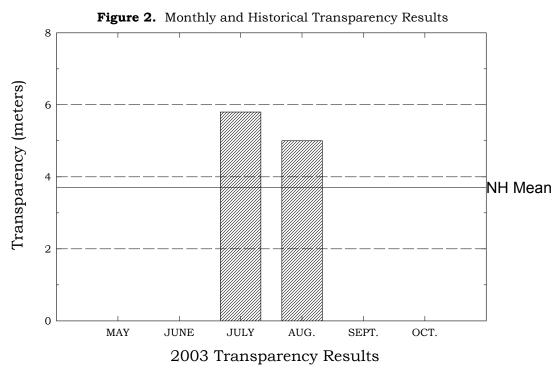
Through the Looking Glass: A Field Guide to Aquatic Plants. North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

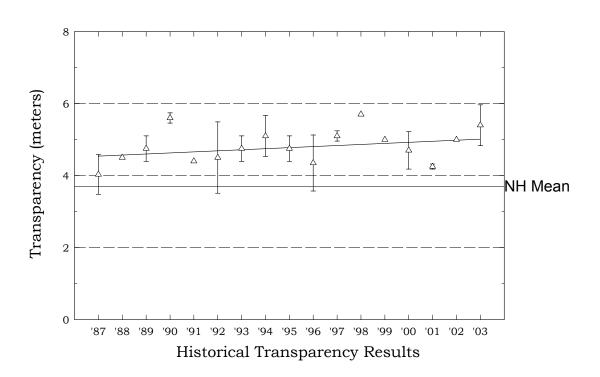
$\frac{\text{OBSERVATIONS AND RECOMMENDATIONS}}{2003}$

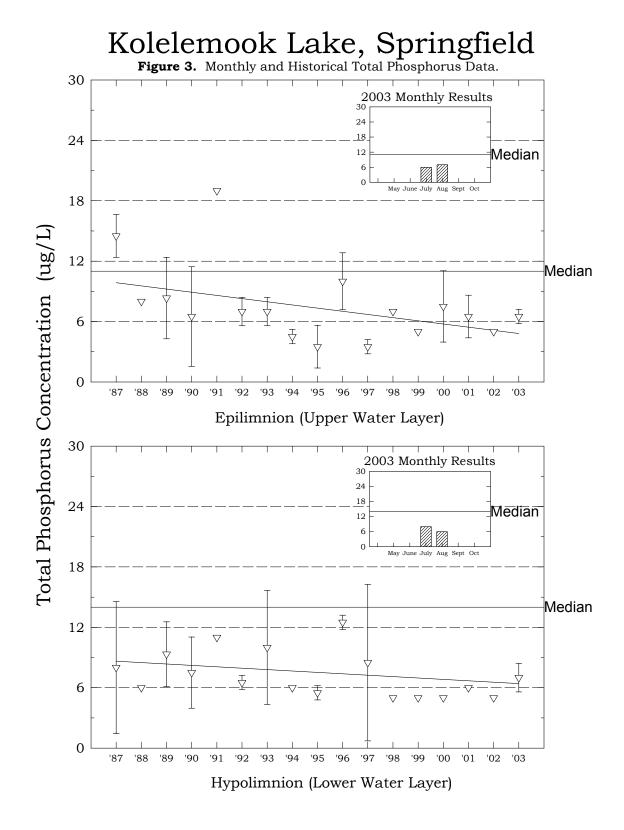

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-NHDES Fact Sheet, (603)271-3503 www.des.state.nh.us/factsheets/bb/bb-4.htm.


APPENDIX A

GRAPHS


Kolelemook Lake, Springfield


Figure 1. Monthly and Historical Chlorophyll-a Results



Kolelemook Lake, Springfield

